9 research outputs found

    Reducing Message Collisions in Sensing-based Semi-Persistent Scheduling (SPS) by Using Reselection Lookaheads in Cellular V2X

    Full text link
    In the C-V2X sidelink Mode 4 communication, the sensing-based semi-persistent scheduling (SPS) implements a message collision avoidance algorithm to cope with the undesirable effects of wireless channel congestion. Still, the current standard mechanism produces high number of packet collisions, which may hinder the high-reliability communications required in future C-V2X applications such as autonomous driving. In this paper, we show that by drastically reducing the uncertainties in the choice of the resource to use for SPS, we can significantly reduce the message collisions in the C-V2X sidelink Mode 4. Specifically, we propose the use of the "lookahead," which contains the next starting resource location in the time-frequency plane. By exchanging the lookahead information piggybacked on the periodic safety message, vehicular user equipments (UEs) can eliminate most message collisions arising from the ignorance of other UEs' internal decisions. Although the proposed scheme would require the inclusion of the lookahead in the control part of the packet, the benefit may outweigh the bandwidth cost, considering the stringent reliability requirement in future C-V2X applications.Comment: Submitted to MDPI Sensor

    Reducing Message Collisions in Sensing-Based Semi-Persistent Scheduling (SPS) by Using Reselection Lookaheads in Cellular V2X

    No full text
    In the C-V2X sidelink Mode 4 communication, the sensing-based semi-persistent scheduling (SPS) implements a message collision avoidance algorithm to cope with the undesirable effects of wireless channel congestion. Still, the current standard mechanism produces a high number of packet collisions, which may hinder the high-reliability communications required in future C-V2X applications such as autonomous driving. In this paper, we show that by drastically reducing the uncertainties in the choice of the resource to use for SPS, we can significantly reduce the message collisions in the C-V2X sidelink Mode 4. Specifically, we propose the use of the “lookahead„, which contains the next starting resource location in the time-frequency plane. By exchanging the lookahead information piggybacked on the periodic safety message, vehicular user equipment (UEs) can eliminate most message collisions arising from the ignorance of other UEs’ internal decisions. Although the proposed scheme would require the inclusion of the lookahead in the control part of the packet, the benefit may outweigh the bandwidth cost, considering the stringent reliability requirement in future C-V2X applications

    Pseudo-Broadcast: An Alternative Mode of Vehicular Communication for Platooning

    No full text

    Empirical Determination of Efficient Sensing Frequencies for Magnetometer-Based Continuous Human Contact Monitoring

    No full text
    The high linear correlation between the smartphone magnetometer readings in close proximity can be exploited for physical human contact detection, which could be useful for such applications as infectious disease contact tracing or social behavior monitoring. Alternative approaches using other capabilities in smartphones have aspects that do not fit well with the human contact detection. Using Wi-Fi or cellular fingerprints have larger localization errors than close human contact distances. Bluetooth beacons could reveal the identity of the transmitter, threatening the privacy of the user. Also, using sensors such as GPS does not work for indoor contacts. However, the magnetometer correlation check works best in human contact distances that matter in infectious disease transmissions or social interactions. The omni-present geomagnetism makes it work both indoors and outdoors, and the measured magnetometer values do not easily reveal the identity and the location of the smartphone. One issue with the magnetometer-based contact detection, however, is the energy consumption. Since the contacts can take place anytime, the magnetometer sensing and recording should be running continuously. Therefore, how we address the energy requirement for the extended and continuous operation can decide the viability of the whole idea. However, then, we note that almost all existing magnetometer-based applications such as indoor location and navigation have used high sensing frequencies, ranging from 10 Hz to 200 Hz. At these frequencies, we measure that the time to complete battery drain in a typical smartphone is shortened by three to twelve hours. The heavy toll raises the question as to whether the magnetometer-based contact detection can avoid such high sensing rates while not losing the contact detection accuracy. In order to answer the question, we conduct a measurement-based study using independently produced magnetometer traces from three different countries. Specifically, we gradually remove high frequency components in the traces, while observing the correlation changes. As a result, we find that the human coexistence detection indeed tends to be no less, if not more, effective at the sampling frequency of 1 Hz or even less. This is because unlike the other applications that require centimeter-level precision, the human contacts detected anywhere within a couple of meters are valid for our purpose. With the typical smartphone battery capacity and at the 1 Hz sensing, the battery consumption is well below an hour, which is smaller by more than two hours compared with 10 Hz sampling and by almost eleven hours compared with 200 Hz sampling. With other tasks running simultaneously on smartphones, the energy saving aspect will only become more critical. Therefore, we conclude that sensing the ambient magnetic field at 1 Hz is sufficient for the human contact monitoring purpose. We expect that this finding will have a significant practicability implication in the smartphone magnetometer-based contact monitoring applications in general

    A Survey of Automatic Contact Tracing Approaches Using Bluetooth Low Energy

    No full text
    corecore